Skip to content
Data Science Completed

PDF Report Generator: Automating Document Creation

Python-based system for generating custom PDF reports with charts and tables

Jithendra Puppala
Jithendra Puppala
2 min read 17 views
PDF Report Generator: Automating Document Creation
Tech Stack: Python ReportLab Matplotlib Pandas

PDF Report Generator: Automating Document Creation

Ever spent hours formatting reports in Word? This project automates that. Feed it data, get beautifully formatted PDFs. Used in production to generate 1000+ reports monthly.

The Problem

Manual report creation is: - Time-consuming (2-3 hours per report) - Error-prone (copy-paste mistakes) - Inconsistent formatting - Doesn't scale

Solution Architecture

Data (CSV/JSON) → Process → Charts → Layout → PDF

Implementation

ReportLab for PDF Generation:

from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Table, Paragraph
from reportlab.lib.styles import getSampleStyleSheet

def create_report(data, output_path):
    doc = SimpleDocTemplate(output_path, pagesize=letter)
    story = []
    styles = getSampleStyleSheet()

    # Title
    title = Paragraph("<b>Monthly Performance Report</b>", 
                     styles['Title'])
    story.append(title)

    # Data table
    table_data = [['Metric', 'Value', 'Change']]
    for row in data:
        table_data.append([row['metric'], row['value'], row['change']])

    table = Table(table_data)
    table.setStyle(TableStyle([
        ('BACKGROUND', (0,0), (-1,0), colors.grey),
        ('TEXTCOLOR', (0,0), (-1,0), colors.whitesmoke),
        ('GRID', (0,0), (-1,-1), 1, colors.black)
    ]))
    story.append(table)

    doc.build(story)

Matplotlib for Charts:

import matplotlib.pyplot as plt
from io import BytesIO

def create_chart(data):
    fig, ax = plt.subplots(figsize=(8, 5))
    ax.plot(data['dates'], data['values'])
    ax.set_title('Performance Trend')
    ax.set_xlabel('Date')
    ax.set_ylabel('Revenue')

    # Save to buffer
    buffer = BytesIO()
    plt.savefig(buffer, format='png', dpi=300, bbox_inches='tight')
    buffer.seek(0)
    return buffer

Combining Everything:

def generate_business_report(data_file):
    # Load data
    data = pd.read_csv(data_file)

    # Process metrics
    metrics = calculate_metrics(data)

    # Generate charts
    trend_chart = create_chart(data)
    pie_chart = create_pie(data)

    # Build PDF
    pdf = create_report_template()
    pdf.add_section('Executive Summary', metrics)
    pdf.add_chart('Trend Analysis', trend_chart)
    pdf.add_chart('Distribution', pie_chart)
    pdf.add_table('Detailed Data', data.to_dict('records'))

    pdf.save('business_report.pdf')

Features

  • Custom branding: Logo, colors, fonts
  • Dynamic tables: Automatic pagination
  • Charts: Line, bar, pie, scatter
  • Multi-page layouts: Headers, footers, page numbers
  • Data validation: Checks before generation

Performance

  • Generation time: 3-5 seconds per report
  • Supports reports up to 100 pages
  • Batch processing: 50 reports in parallel
  • Template caching: 40% speed improvement

Use Cases

  1. Business analytics: Monthly KPI reports
  2. Student transcripts: Academic records
  3. Invoice generation: Billing statements
  4. Lab results: Medical test reports

Results

  • Time saved: 100+ hours/month
  • Reports generated: 10,000+
  • Error reduction: 95% fewer mistakes
  • Cost savings: $5000/month in manual labor

The key insight: Good automation isn't about replacing humans, it's about freeing them for higher-value work.

Get In Touch

I'll respond within 24-48 hours